Newsletter, Omaggi, Area acquisti e molto altro. Scopri la tua area riservata: Registrati Entra Scopri l'Area Riservata: Registrati Entra
Home / Blog / Medicina Integrata

La fisica quantistica spiegata in modo semplice

Medicina Integrata

La fisica quantistica spiegata in modo semplice

Medicina Integrata

La fisica quantistica spiegata in modo semplice
5568 condivisioni

Che cos'è la fisica quantistica? È la teoria fisica che descrive il comportamento della materia, della radiazione e di tutte le loro interazioni. Scopri in questo interessante articolo tutto quello che non sapevi sulla fisica quantistica


Antonella Ravizza - 07/12/2019

La fisica quantistica è la teoria fisica che descrive il comportamento della materia, della radiazione e di tutte le loro interazioni viste sia come fenomeni ondulatori sia come fenomeni particellari (dualismo onda-particella), a differenza della fisica classica o newtoniana, basata sulle teorie di Isaac Newton, che vede per esempio la luce solo come onda e l’elettrone solo come particella.

Il dualismo onda–particella

Il dualismo onda–particella è la principale causa della messa in discussione di tutte le teorie della fisica classica sviluppate fino al XIX secolo. Questa teoria si può applicare anche alla luce, infatti Young per dimostrare che la luce si propagava per onde propose un esperimento: un fascio di raggi luminosi colpiva uno schermo in cui erano presenti due fori, o fenditure, molto piccoli, che diventavano due sorgenti omogenee. A questo punto mise uno schermo che raccoglieva la luce proveniente dai due fori e vide nettamente delle frange chiare e scure, molto simili alle onde del mare provenienti da due sorgenti diverse.

Questo fenomeno non si può spiegare con la teoria corpuscolare, ma con la teoria ondulatoria. Due onde della stessa ampiezza possono essere in fase e, se interferiscono, originano un'onda sinusoidale che è somma delle sue sinusoidi componenti; possono però essere in controfase e, se interferiscono, originano un'onda nulla. Questo esperimento è molto importante perché verrà ripreso in seguito da Richard Feynman.

Intanto nel 1803 gli atomi erano considerati i costituenti fondamentali della materia. Nel 1874 G. Stoney scoprì l’elettrone e poi Rutherford il nucleo atomico, caricato positivamente, circondato da elettroni carichi negativamente come il sole in mezzo ai pianeti del sistema solare. Però seguendo la teoria elettromagnetica di Maxwell sulle cariche in moto accelerato, si giunse alla conclusione che l’atomo avrebbe dovuto collassare, invece la materia che osserviamo continuamente è stabile. A cavallo tra il XIX e il XX secolo lo studio dell’effetto fotoelettrico mise in discussione la completezza della meccanica classica, suggerendo che la radiazione elettromagnetica avesse il duplice comportamento ondulatorio e corpuscolare durante l’interazione con la materia.

L'effetto fotoelettrico

Infatti in certe situazioni, come messo in evidenza nel 1905 da Einstein con l'ipotesi del fotone nell'effetto fotoelettrico, la luce si comportava decisamente come composta da particelle. L’effetto fotoelettrico è il fenomeno che si manifesta con l'emissione di particelle elettricamente cariche da parte di un corpo esposto a onde luminose o a radiazioni elettromagnetiche di varia frequenza: gli elettroni vengono emessi dalla superficie di un conduttore metallico (o da un gas) in seguito all'assorbimento dell'energia trasportata dalla luce incidente sulla superficie stessa. Come diceva Planck la radiazione luminosa di frequenza ν è composta da particelle corpuscolari (fotoni) di energia E = h ν (h è la costante di Planck). Per riuscire a strappare un elettrone a una superficie metallica, l’energia del fotone deve essere più grande dell’energia di legame dell’elettrone nel metallo (W). Inserendo ora un amperometro fra anodo e catodo si misura così un passaggio di corrente. Se invece l’energia del fotone è inferiore a W non si ha effetto fotoelettrico, e l’amperometro non registra passaggio di corrente. La teoria ondulatoria classica prevedeva però che, all'aumentare dell'intensità della luce incidente, aumentasse l'energia degli elettroni emessi.

Nel 1902, il fisico tedesco Philipp Lenard mostrò invece che l'energia dei fotoelettroni non dipendeva dall’intensità di illuminazione, ma dalla frequenza (o dalla lunghezza d'onda) della radiazione incidente. L’intensità della radiazione determinava invece l’intensità della corrente, cioè il numero di elettroni strappati alla superficie metallica. Il risultato sperimentale era inspiegabile pensando che la natura della luce fosse solo ondulatoria.
Nel 1905 Albert Einstein spiegò l'effetto fotoelettrico con l'ipotesi che i raggi luminosi trasportassero particelle, chiamate fotoni, la cui energia è direttamente proporzionale alla frequenza dell’onda corrispondente: incidendo sulla superficie di un corpo metallico, i fotoni cedono parte della loro energia agli elettroni liberi del conduttore, provocandone l'emissione. Allora l'energia dell'elettrone liberato dipende solo dall'energia del fotone, mentre l’intensità della radiazione è direttamente correlata al numero di fotoni trasportati dall’onda, e dunque può influire sul numero di elettroni estratti dal metallo, ma non sulla loro energia. Era difficile credere che la luce presentasse una specie di dualismo, apparendo come onda o come particella a seconda degli esperimenti. De Broglie nel 1924 ipotizzò che tutta la materia manifestasse lo stesso dualismo.

 

L'esperimento della doppia fenditura

Nel 1927 Davisson e Germer ebbero la prova sperimentale di tale comportamento: osservarono figure di diffrazione facendo attraversare un cristallo di nichel da un fascio di elettroni (la diffrazione è un fenomeno associato alla deviazione della traiettoria di propagazione delle onde quando queste incontrano un ostacolo sul loro cammino). Nasceva da qui la possibilità di utilizzare fasci di particelle per eseguire esperimenti di interferenza con due fenditure, proprio come Young aveva fatto con la luce.
L’esperimento delle due fenditure permette di dimostrare la dualità onda-particella della materia. Richard Feynman ripeteva che questo esperimento era la chiave per comprendere la meccanica quantistica. Questa volta vennero usate lastre rilevatrici moderne e una sorgente estremamente debole di luce o elettroni. Aprendo soltanto una fenditura (ad esempio, quella di sinistra), sulla lastra fotografica si ottiene la proiezione della fenditura. Aprendo ora solo la fessura destra si forma una figura speculare a quella precedente. La luce risponde quindi perfettamente alla teoria corpuscolare di Newton. Ora, provando a prevedere che figura risulterebbe dall’apertura contemporanea di entrambe le fenditure, secondo la teoria corpuscolare si verificherebbe la semplice sovrapposizione delle due figure precedenti. In realtà, quella che si genera è una figura di interferenza, ovvero in questo caso la luce si comporta come un’onda meccanica: sulla lastra fotografica avremmo in alcuni punti sovrapposizioni di picchi o ventri, in altri cancellazioni. Ciò dimostra inequivocabilmente l'esistenza del dualismo onda-corpuscolo, sia della materia che della radiazione elettromagnetica.
Niels Bohr introdusse anche il principio di complementarità, secondo il quale i due aspetti, corpuscolare e ondulatorio, non possono essere osservati contemporaneamente perché si escludono a vicenda, ovvero il tipo di esperimento determina il successivo comportamento delle particelle in esso coinvolte.

Continua la lettura del secondo articolo:


Potrebbe interessarti anche:

 


 


Antonella Ravizza
Antonella Ravizza si è laureata in fisica nucleare all’Università degli Studi di Pavia, con la quale ha mantenuto rapporti di collaborazione.... Leggi la biografia
Antonella Ravizza si è laureata in fisica nucleare all’Università degli Studi di Pavia, con la quale ha mantenuto rapporti di collaborazione. È docente di Fisica presso l’Istituto “A. Cesaris” di Casalpusterlengo (LO).Nominata tutor del Presidio Scientifico della provincia di Lodi per l’insegnamento delle scienze sperimentali, si... Leggi la biografia

5568 condivisioni

Più dettaglio, please!

postato da Bernardo Gattabria il 31/07/2017

Ma vogliamo entrare in dettaglio? Queste cose si sanno già! Come si arriva a considerare l'unione del passato presente e futuro? e le descrizioni dell'universo olografico?

Risposta al commento precedente

postato da Antonella Ravizza il 12/05/2017

Purtroppo la fisica quantistica non è semplice, ma può diventare ancora più complicata se viene studiata utilizzando una matematica rigorosa. Noi qui abbiamo scelto di non fare tutta la difficile trattazione matematica, ma di spiegare i contenuti, per questo il titolo :"Spiegata in modo semplice".

Grazie del Commento a Antonella Ravizza! - Lo staff di redazione - 

Definiamo "in modo semplice"

postato da Monica il 08/04/2017

Ma quando avete deciso di intitolare questo articolo "La fisica quantistica spiegata in modo semplice" eravate seri? Semplice per chi? Per uno scienziato o per un normalissimo e comune umanoide come me e molti altri?

Potrebbero interessarti altri articoli del blog



Abc della Salute Naturale
Omaggio Abc della Salute Naturale

Iscriviti a My Macro e ricevi questo omaggio!

Voglio ricevere Abc della Salute Naturale

Iscriviti alla newsletter. Per te subito in REGALO:
Abc della Salute Naturale